Totally unimodular stochastic programs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally unimodular stochastic programs

We consider totally unimodular (TU) stochastic programs, that is, two-stage stochastic programs whose extensive-form constraint matrix is TU. We generalize the notion of total unimodularity to apply to sets of matrices and provide properties of such sets. We provide several sufficient conditions on stochastic programs to be TU. When solving TU stochastic problems using the L-shaped method, it i...

متن کامل

Totally unimodular multistage stochastic programs

We consider totally unimodular multistage stochastic programs, that is, multistage stochastic programs whose extensive-form constraint matrices are totally unimodular. We establish several sufficient conditions and identify examples that have arisen in the literature.

متن کامل

Totally Unimodular Congestion Games

We investigate a new class of congestion games, called Totally Unimodular (TU) Congestion Games, where the players’ strategies are binary vectors inside polyhedra defined by totally unimodular constraint matrices. Network congestion games belong to this class. In the symmetric case, when all players have the same strategy set, we design an algorithm that finds an optimal aggregated strategy and...

متن کامل

Linear Discrepancy of Basic Totally Unimodular Matrices

We show that the linear discrepancy of a basic totally unimodular matrix A ∈ Rm×n is at most 1− 1 n+1 . This extends a result of Peng and Yan. AMS Subject Classification: Primary 11K38.

متن کامل

Linear Discrepancy of Totally Unimodular Matrices

Let p ∈ [1,∞[ and cp = maxa∈[0,1]((1 − a)ap + a(1 − a)p)1/p. We prove that the known upper bound lindiscp(A) ≤ cp for the Lp linear discrepancy of a totally unimodular matrix A is asymptotically sharp, i.e., sup A lindiscp(A) = cp. We estimate cp = p p+1 ( 1 p+1 )1/p (1+εp) for some εp ∈ [0, 2−p+2], hence cp = 1− ln p p (1+ o(1)). We also show that an improvement for smaller matrices as in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2012

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-012-0529-8